Repository logo
  • English
  • Deutsch
  • Español
  • Français
  • Log In
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Research Outputs
  • Fundings & Projects
  • Researchers
  • Statistics
  • English
  • Deutsch
  • Español
  • Français
  • Log In
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. CRIS
  3. Publication
  4. A Robbins–Monro Algorithm for Non‐Parametric Estimation of NAR Process with Markov Switching: Consistency
 
  • Details
Options

A Robbins–Monro Algorithm for Non‐Parametric Estimation of NAR Process with Markov Switching: Consistency

Journal
Journal of Time Series Analysis
ISSN
0143-9782
Date Issued
2017-04-20
DOI
10.1111/jtsa.12237
WoS ID
WOS:000413152100002
Abstract
We approach the problem of non‐parametric estimation for autoregressive Markov switching processes. In this context, the Nadaraya–Watson‐type regression functions estimator is interpreted as a solution of a local weighted least‐square problem, which does not admit a closed‐form solution in the case of hidden Markov switching. We introduce a non‐parametric recursive algorithm to approximate the estimator. Our algorithm restores the missing data by means of a Monte Carlo step and estimates the regression function via a Robbins–Monro step.
OCDE Subjects

Natural sciences::Mat...

Author(s)
Fermin, Lisandro  
Facultad de Ingeniería  
Ricardo Rios
Luis Angel Rodriguez

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback

Hosting & Support by

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science